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A B S T R A C T

Locating boundary is very important for Temporal Action Detection (TAD) and is a key factor affecting the
performance of TAD. However, two factors lead to inaccurate boundary localization: the movement feature
submergence and the existence of multi-scale actions. In this work, to address the submergence of movement
feature, we design the Movement Enhance Module (MEM), in which the Movement Feature Extractor (MFE)
and Multi-Relation Module (MRM) are used to highlight short-term and long-term movement information
respectively. To address the characteristic of multi-scale actions, we propose a Scale Feature Pyramid Network
(SFPN) to detect multi-scale actions and design a two-stage training strategy that makes each layer focus on
a specific scale action. These tow modules are integrated as 𝑀3𝑁𝑒𝑡, and extensive experiments demonstrate
its effectiveness. 𝑀3𝑁𝑒𝑡 outperforms other representative TAD methods on ActivityNet-1.3 and THUMOS-14.
1. Introduction

Recently, considerable attention has been paid to video action
understanding, due to the huge number of videos and their widespread
in society. As a significant task in this field, Temporal Action Detec-
tion (TAD) aims to localize the boundary of each action segment in
untrimmed videos and label it with a certain action class. The precise
determination of action boundaries presents an enduring challenge
within the field of TAD.

Detecting action boundaries reliably within untrimmed video is
impeded by two challenges. The initial challenge, as mentioned in
RefactorNet [1], action component will be affected by background
and context component, denoted as movement feature submergence,
which occurs in short-term and long-term temporal relations of the
video. In short-term temporal relation, where either context but not
movement itself dominates feature expression, or movement is small
in pixel size. For the strong context case, as shown in Fig. 1(a),
the presence of an Accordion instrument effortlessly implies the ac-
tion of ‘‘Playing Accordion’’, while this strong class-specific context
obfuscates the underlying movement information within the action
region. For the small pixel case, as shown in Fig. 1(b), for Futsal,
the vast proportion of pixels occupied by the stadium scene relegates
the movement information to insignificance. This movement feature
submergence induces the feature in background to be similar with the
feature in action area, which obscures the action boundaries. However,
RefactorNet [1] attempts to decouple action component and context
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component to amplify movement information in a short-term temporal,
ignoring long-term temporal correlations.

In complex long-term temporal relation, temporal and semantic
information can complement and highlight the submerged feature.
Temporal 1D convolution is widely adopted to associate locally adja-
cent snippets and build the local temporal relations. Graph convolution
network is applied to model relations between arbitrary snippets [2]
or segments [3]. More recently, MMnet [4] and DRN [5] utilize self-
attention to grasp semantic relations between distant snippets. In fact,
relations in the long-term of video are complicated but central to
accurate detection. As shown in Fig. 2(a), based only on limited local
information cannot sufficiently enhance submerged movement features.
If the model is allowed to look forward and backward and perceive
the segmental temporal relations, submerged movement in consecutive
similar frames can be detected much easier. Besides, semantic relations
are also critical for TAD. For example, in Fig. 2(b), semantic relations
help to generate more expressive action feature and complement sub-
merged movement information. Overall, despite the above beneficial
attempts at video relations, a unified framework that considers and
exploits multiple relations simultaneously is still absent in TAD.

The subsequent challenge arises from the multi-scale of actions in
an untrimmed video. As shown in Fig. 1(c), the richness of features
exhibits significant variations across different scales. Action segments
that represent a small proportion of the entire video, referred to as
small-scale actions, exhibit scarce features. Conversely, segments that
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Fig. 1. (a) Strong class-specific context of the accordion. (b) Small movement of Futsal. (c) Multi-scale actions have different feature richness and action pattern.
Fig. 2. (a) Temporal relations help the localization of boundary, and (b) Semantic relations benefit the expression of action feature.
account for a larger proportion, referred to as large-scale actions,
display abundant features. As mentioned in [6], there are different
action patterns between different scales. Specifically, compared with
small-scale action, large-scale action contains more obviously action
process (i.e. start phase, action phase and end phase). MD-TAPN [6]
uses dilation module to handle different scale actions and AFDS [7]
resorts feature pyramid network (FPN) to solve the problem. However,
there are two aspects that are ignored. Firstly, these works ignore
the ability of each layer to adaptively learn expression of actions at
different scales. Secondly, the information flow in FPN is insufficient,
lacking multi-scale receptive fields between different pyramid layers.

In this paper, as an effort to overcome the above challenges, we
design the 𝑀3𝑁𝑒𝑡, which features two crucial designs: (1) In order
to overcome the movement feature submergence, and enlarge the
difference between foreground and background snippets, we propose
the Movement Enhance Module (MEM). MEM contains two important
designs. Firstly, we propose the Movement Feature Extractor (MFE),
which leverages the dynamic information of the frame sequence and
the static information of the frame to extract movement feature in
a snippet. Secondly, Multi-Relation Module (MRM) is proposed to
2

consider and exploit multiple relations simultaneously. In MRM, several
basic units are used flexibly to build three paths with different responsi-
bilities: 1D convolution for local information aggregation, bidirectional
GRU for segmental temporal relations, and the self-attention mecha-
nism for global semantic relations. Multi-scale feature learning is only
used for local path. MRM also includes segmental path and semantic
path, so we call it multi-relation module. (2) In order to obtain specific
representations for actions at different scales, we propose the Scale
FPN (SFPN). SFPN employs a U-shape network to produce multi-scale
video features and facilitate the information flow between different
layers. Moreover, to ensure that each layer in SFPN focuses on action
of the corresponding scale, we design a two-stage learning strategy. In
the former Generalization stage, each layer is trained with all action
segments; in the latter Specialization stage, each layer is biased toward
actions in a specific scale range.

In summary, this work explores how to enhance submerged move-
ment features and cope with the property of multi-scale in TAD. Its
contributions are summarized as follows.

1. To alleviate the movement feature submergence,we design the
MEM to highlight the movement feature in a video snippet, and
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explore multi-relations between snippets. MFE is designed to
extract movement feature in a short range and MRM is designed
to build long range relations.

2. For the multi-scale actions in an untrimmed video with dif-
ferent feature patterns, we design the SFPN to learn different
scale actions respectively, where targeted training and inference
strategies are adopted. Consequently, each layer in the SFPN
specializes in actions at a certain scale range.

3. Extensive experiments conducted on two datasets verify the ef-
fectiveness of our proposed method. On ActivityNet1.3, 𝑀3𝑁𝑒𝑡
promotes the best average mAP from 36.6% to 38.0%, and
boosts the mAP@0.7 from 31.8% to 36.8% on THUMOS-14.

2. Related work

Temporal Action Detection. Benefiting from the successful prac-
ice of image object detection, the two-stage pipeline prevails in TAD
ask. This pipeline consists of a first stage for localizing candidate
ction segments within the video and a second stage that employs an
ction classifier to classify these proposals. The first stage has three
ain paradigms. (1) Anchor-Based method: Methods [8,9] involve
lacing anchors of varying scales onto the video feature and subse-
uently determining the final confidence of these anchors. However,
hey cannot produce flexible boundaries. (2) Boundary-Base method:
ethods [10,11] predict boundary scores on the video feature, which

re combined to generate proposals. However, the confidence of the
roposal lacks global information. (3) Combined method: Methods [12,
3] combine these two methods to generate precise confidence and
lexible boundaries. In this work, we follow the combined method to
ntegrate the start point and end point as a proposal and generate
ulti-scale anchor maps to predict anchor confidence.
Video Feature for TAD. The pre-trained TAC model is often used

s the feature extractor for Temporal Action Detection which receives
everal frames as a snippet to distill both appearance and motion
nformation from raw video frames. TSN [14], I3D [15] and TSM [16]
re the most common feature extractors. However, they primarily focus
n the action categories, leading to some actions that are strongly
elated to the scene having quite similar representations to back-
round segments. To overcome the drawback, TSP [17] adds addi-
ional background supervision in the pretraining model to generate the
ackground-sensitive feature. BSP [18] artificially synthesizes different
ideo boundaries and conducts boundary learning in the pretrained
odel to generate boundary-sensitive feature. Com-STAL [19] proposes

o construct the interaction between objects and actions in the video
nd capture the motion information. However, these works cannot
undamentally address the problem of movement feature submergence.
n this paper, 𝑀3𝑁𝑒𝑡 uses the Movement Enhance Module (MEM) to
agnify the movement feature and the difference between action and

ackground.
Long-term temporal relations within the video are very important

or accurate action detection. Many researches [5,20] have pointed out
he importance of contextual information. PGCN [3] and GTAD [2]
se the graph convolution to connect arbitrary frames or segments,
nd thus accumulate information as required. Lately, RTD-Net [21]
anages to assist action detection with semantic relations inside video.
espite these above helpful tries, there is still lack of a unified frame-
ork that can explicitly establish multiple relations together. In this
aper, the Multi-Relation Module (MRM) is designed to tackle it.
Multi-scale Action Detection. The scale of actions varies dra-

atically in a video. In comparison to larger actions, smaller actions
uffer from limited samples and insufficient feature representation.
D-TAPN [6] uses multi-scale dilation module to grab different scale

eatures and AFDS [7] focuses on feature pyramid network (FPN)
o generate different temporal resolution features. However, the FPN
tructure fails to explicitly learn specific feature representations tai-
3

ored to individual action scales and lacks inherent information flow.
SI [22] proposes a scale-invariant loss, which balances large and
mall actions in quantity, but fails to fundamentally solve the scarce
eature of small actions. In this work, we propose SFPN to cope with
hese problems, which establishes associations between different scale
eatures and learns scale-specific feature representations.

. Method

.1. Overview

roblem Definition. Input of the 𝑀3𝑁𝑒𝑡 is an untrimmed video de-
oted as 𝑉 = {𝑣𝑖}

𝐿𝑣
𝑖=1, where 𝑣𝑖 represents the 𝑖th frame of the video

nd 𝐿𝑣 is the total frames. The duration of the video is 𝑇𝑣. Due to re-
undancy between video frames, several consecutive frames are usually
egarded as a snippet. With the sampling interval 𝜎, the whole video
an be defined as snippet sequence 𝑆 = {𝑠𝑖}

𝐿𝑠
𝑖=1, 𝐿𝑠 = 𝐿𝑣∕𝜎 representing

he number of total snippets. The output of the 𝑀3𝑁𝑒𝑡 is {𝜓𝑖|𝜓𝑖 =
𝑡𝑖,𝑠, 𝑡𝑖,𝑒, 𝑐𝑖, 𝑠𝑐𝑜𝑟𝑒𝑖)} where 𝑡𝑖,𝑠, 𝑡𝑖,𝑒, 𝑐𝑖 and 𝑠𝑐𝑜𝑟𝑒𝑖 are start time, end time,
ction category and confidence score, respectively. The annotations of
ntrimmed video are action instances {𝛹𝑖|𝛹𝑖 = (𝑡∗𝑖,𝑠, 𝑡

∗
𝑖,𝑒, 𝑐

∗
𝑖 )}.

ipeline. The architecture of 𝑀3𝑁𝑒𝑡 is shown in Fig. 3. 𝑀3𝑁𝑒𝑡 is
ainly composed of two parts: Movement Enhance Module (MEM) and

cale FPN (SFPN). Firstly, video 𝑉 is sent to the Movement Enhance
odule (MEM) to extract movement enhanced feature and explore

ifferent video relations between snippets. Next, the U-Shape module
s employed to transform the feature into 𝐹 1

𝑣 , 𝐹 2
𝑣 and 𝐹 3

𝑣 with length
1, 𝐿2 and 𝐿3, respectively. These features are combined to form a

hree-layer feature pyramid. Subsequently, the Detection Head at each
ayer generates boundary probabilities for each snippet, as well as IoU
core, center offset and duration offset of each anchor. All the outputs
re fused to generate action proposals. Finally, the Action Classifier tags
very proposal with a certain action label.

.2. Movement enhance module

To obtain the feature that contains action category information and
s sensitive to foreground and background, simultaneously, we pro-
ose the Movement Enhance Module, which contains two vital stages:
ovement Feature Extractor (MFE) and Multi-Relation Module (MRM).
FE mainly extracts movement information in a snippet. Additionally,
RM explores multi-relations between snippets in a long-term temporal

elation.

ovement Feature Extractor. In order to amplify the movement
nformation, MFE is proposed. As shown in Fig. 4, MFE uses a siamese
etwork to highlight the movement information in a video snippet. We
elect R(2+1)D-34 [23] as backbone with the TAC pretrained weight
n Kinetics-400, and two networks share the weight. MFE has two
nput paths. One path is video snippet path composed of consecutive
rames, and the other is frame duplication path, which selects a frame
rom the snippet and copies it to the length of the snippet. The feature
rom the video snippet path contains both static scene and dynamic
ovement information, which is 𝐹𝑇 𝑜𝑡𝑎𝑙 ∈ R𝐶′×𝑇 , but feature from the

rame duplication path only contains static scene information, which
s 𝐹𝑆𝑡𝑎𝑡𝑖𝑐 ∈ R𝐶′×𝑇 . And then, MFE extracts the movement information
n the snippet using the difference between the two features, which
s defined as 𝐹𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ∈ R𝐶′×𝑇 . Finally, 𝐹𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 and 𝐹𝑇 𝑜𝑡𝑎𝑙 are
oncatenated as 𝐹𝑀𝑇 ∈ R2𝐶′×𝑇 . In the Table 10, we select three static
rame selection methods and verify the impact of different selection
ethods.

ulti-Relation Module. To establish long-range temporal relations
etween snippets, the Multi-Relation Module (MRM) is proposed. As
hown in Fig. 5, there are three well-designed paths in MRM. (1)
ocal Path: 1D convolution can directly establish relations in a local
cale 𝑘, where 𝑘 is the kernel size. In order to obtain multi-scale
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Fig. 3. Overview of our 𝑀3𝑁𝑒𝑡 and the structure of some sub-modules. There are two crucial parts in the framework (Top): Movement Enhance Module (MEM) and Scale FPN
(SFPN). MEM is used to generate movement enhanced feature. SFPN is designed to generate multi-scale feature pyramid. The structure of the sub-modules is shown below (Bottom)
with the same color in the framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Illustration of MFE. This module constructs the movement feature in a snippet
by the difference between dynamic video snippet and static picture.

receptive field, inspired by spatial pyramid pooling [24], we design
the Temporal Pyramid Pooling (TPP) in local path. The TPP module
uses the kernel size of 3, 5 and 7 to perform average pooling on the
feature sequence. (2) Segmental Path: the recurrent neural network pro-
cesses each snippet successively according to the input order, with an
outstanding ability to model the temporal relation. Furthermore, GRU
is capable of selective memory and forgetting. In MRM, bidirectional
GRU is applied to establish long-range temporal relations, which makes
the receptive field of the model extend bidirectionally to the past and
future. (3) Semantic Path: self-attention [25] mechanism is able to build
global relations between any semantically similar segments, exchanging
and aggregating information as needed. Therefore, to effectively grasp
global semantic relations, four cascaded self-attention modules consti-
tute this path. Multi-head attention is applied and the head count is set
as 4.

3.3. Scale feature pyramid network

We contend different scale actions have different patterns. There-
fore, the SFPN is designed to learn patterns of specific scales. SFPN
contains U-Shape Module and Detector Head, which aims to generate
feature pyramid and final detection results, respectively.
4

Fig. 5. Multi-Relation Module includes three paths consisting of different basic units,
responsible for temporal local relations, temporal segmental relations and global
semantic relations respectively.

U-Shape Module. For feature pyramid generating, as shown in Fig. 3,
SFPN uses a U-shape architecture inspired by [26] to generate feature
sequences in different temporal resolution. From top to down, SFPN
uses multiple temporal convolution layers followed by AvgPooling to
downsample the temporal resolution. From bottom to up, to restore the
lower layer information, SFPN uses several 1D transpose convolution to
restore the feature resolution and features in the same resolution are
concatenated.

Detector Head. As demonstrated in Fig. 3, each layer in SFPN is
equipped with its own detection head and each detector head consists
of a Boundary Predictor, an Anchor Feature Align Layer and two An-
chor Score Predictor (ASP). The output of the Boundary Predictor and
Anchor Score Predictor are used to generate proposals and confidence
scores, and the Anchor Feature Align Layer is to generate the feature
representation for each anchor.
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Fig. 6. The two-stage training strategy (left column and middle column) and the inference strategy (right column) of ASP. Each square represents an anchor map, the gray area
is the invalid region. Other colors represent different sampling ratios in a certain scale range, with white, green, yellow and red representing 0%, 𝑟𝑖, 2𝑟𝑖 and 100% respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Boundary Predictor. Boundary Predictor aims at predicting boundary
probabilities 𝑃𝑠 = {𝑝𝑖𝑠}

𝐿𝑖
𝑖=1, 𝑃𝑒 = {𝑝𝑖𝑒}

𝐿𝑖
𝑖=1 of each snippet, indicating the

probability that each snippet period is the start or end of action.

Anchor Feature Align Layer. Supposing 𝑁𝑖 anchors are randomly
sampled to participate in the forward. The Anchor Feature Align Layer
adopts SGAlign designed in [2] to generate feature expressions 𝐹 𝑖𝐴 ∈
R𝐶×𝑆×𝑁𝑖 for anchors, where 𝑆 is the sampling number of snippets
within an anchor.

Anchor Score Predictor. IoU-ASP and Offset-ASP have the same struc-
ture to recognize the action pattern within an anchor. For the 𝑖th
layer in SFPN, IoU-ASP generates two maps 𝑀 𝑖

𝑐𝑙𝑠 ∈ R𝐷𝑖×𝐿𝑖 ,𝑀 𝑖
𝑟𝑒𝑔 ∈

R𝐷𝑖×𝐿𝑖 of shape [𝐷𝑖, 𝐿𝑖], where 𝐷𝑖 is predefined maximum anchor
duration. In Offset-ASP, two output maps are denoted as 𝑀 𝑖

𝑐𝑒𝑛𝑡 ∈
R𝐷𝑖×𝐿𝑖 ,𝑀 𝑖

𝑑𝑢𝑟𝑎 ∈ R𝐷𝑖×𝐿𝑖 . These two maps indicate each anchor’s center
offset and duration offset respectively.

3.4. Specific action pattern learning

Actions of different scales have different feature representations.
Correspondingly, different layers in SFPN have different feature gran-
ularity and temporal resolution. Therefore, we advocate applying a
targeted training strategy for actions at different scales, assuring that
each layer in SFPN is only responsible for actions at a specific scale
range. Specifically, define the scale 𝑆 ∈ [0, 1] as the ratio of action
length to video length. Then the first layer (the top layer of the pyra-
mid) with the longest sequence is responsible for small-scale actions
whose scale in [𝑆1

𝑚𝑖𝑛, 𝑆
1
𝑚𝑎𝑥], and the second layer (the middle layer of the

pyramid) with a moderate sequence length is responsible for medium-
scale actions whose scale in [𝑆2

𝑚𝑖𝑛, 𝑆
2
𝑚𝑎𝑥]. The remaining third layer with

the shortest sequence is responsible for large-scale actions whose scale
belongs to [𝑆3

𝑚𝑖𝑛, 𝑆
3
𝑚𝑎𝑥]. To implement this idea, a two-stage training

strategy is designed.

Two-stage training strategy. The two-stages of training ASP are Gen-
eralization and Specialization, respectively. Due to the different lengths
of feature sequences, the total number of dense anchors contained in
each layer varies. In order to ensure that each layer is trained equally
and reduce the computational cost, different anchor sampling ratios 𝑟1,
𝑟2, 𝑟3 are set for the three layers, where 0% < 𝑟1 ≤ 𝑟2 ≤ 𝑟3 ≤ 100%. (1) In
the former Generalization stage, given the sampling ratio 𝑟𝑖, randomly
sample 𝑁𝑖 =

(𝐿𝑖
2

)

⋅ 𝑟𝑖 anchors from valid region to train the IoU-ASP
and Offset-ASP of 𝑖th layer, as shown in the left column of Fig. 6. The
purpose of this stage is to let ASP learn a general pattern of all actions.
(2) In the latter Specialization stage, for the 𝑖th layer in SFPN, the
5

training samples come from two parts, as shown in the middle column
in Fig. 6. The first part are randomly sampled according to the sampling
rate of 𝑚𝑖𝑛(100%, 2 ⋅ 𝑟𝑖) from anchors whose scale in [𝑆 𝑖𝑚𝑖𝑛, 𝑆

𝑖
𝑚𝑎𝑥] (yellow

area in Fig. 6). The second part are sampled from the remaining anchors
whose scale in (0, 𝑆𝑖𝑚𝑖𝑛) or (𝑆 𝑖𝑚𝑎𝑥, 100%], with the sampling rate of 𝑟𝑖
(green area in Fig. 6). This Specialization stage highlights the effect of
anchors at the certain scale range, making the detection head of each
layer more specialized.

3.5. Training & inference

Label Assignment. Assuming the video duration is 𝐿𝑣, each snippet
corresponds to a video period. In annotation, a ground-truth action
which starts at 𝑡∗𝑠 and ends at 𝑡∗𝑒 . Expanding boundary from moment to
region, the start region is defined as 𝑅𝑠 = [𝑡∗𝑠 −1.5 𝑇𝑣𝐿𝑖

, 𝑡∗𝑠 +1.5 𝑇𝑣𝐿𝑖
] and end

region is defined as 𝑅𝑒 = [𝑡∗𝑒 −1.5 𝑇𝑣𝐿𝑖
, 𝑡∗𝑒 +1.5 𝑇𝑣𝐿𝑖

]. For Boundary Predictor,
compute the overlap between each snippet period and 𝑅𝑠 as the label
of start probabilities 𝐺𝑖𝑠 ∈ R𝐿𝑖 . Similarly, compute the overlap between
snippet period and 𝑅𝑒 as the label of end probabilities 𝐺𝑖𝑒. For IoU-ASP,
following [12], IoU between each anchor and all actions are calculated
and then arranged into a map 𝐺𝑖𝐼𝑜𝑈 ∈ R𝐷𝑖×𝐿𝑖 . Anchors with IoU score
greater than 0.9 participate in the training of Offset-ASP. For anchor
start at 𝑡𝑠 and end at 𝑡𝑒, assuming its corresponding ground-truth action
is [𝑡∗𝑠 , 𝑡

∗
𝑒 ], the center offset 𝛥𝑐 and duration offset 𝛥𝑑 are calculated as

Eqs. (1)–(2), and arranged into maps 𝐺𝑖𝑐𝑒𝑛𝑡 ∈ R𝐷𝑖×𝐿𝑖 and 𝐺𝑖𝑑𝑢𝑟𝑎 ∈ R𝐷𝑖×𝐿𝑖 .

𝑐 =
𝑡𝑠 + 𝑡𝑒

2
, 𝑑 = 𝑡𝑒 − 𝑡𝑠, 𝑐∗ =

𝑡∗𝑠 + 𝑡
∗
𝑒

2
, 𝑑∗ = 𝑡∗𝑒 − 𝑡

∗
𝑠 (1)

𝛥𝑐 = 𝑐∗ − 𝑐
𝑑

, 𝛥𝑑 = log 𝑑
∗

𝑑
(2)

Basic Loss. (1) For the 𝑖th layer, the loss of Boundary-Predictor is the
re-weighted binary cross-entropy loss 𝐿𝐵 Eq. (3), where 𝑃 = {𝑝𝑡}

𝐿𝑖
𝑡=1

and 𝐺 = {𝑔𝑡}
𝐿𝑖
𝑡=1 represent the predicted boundary probabilities and

its label of all snippets, respectively. Snippets with 𝑔𝑡 > 0.5 serve as
positive samples (i.e., 𝛿{𝑔𝑡 > 0.5} = 1) and others are negative samples.
𝑇 +
𝑖 and 𝑇 −

𝑖 are the number of positive and negative samples in this
layer respectively. (2) The loss of IoU-ASP is the re-weighted binary
cross-entropy loss 𝐿𝑎𝑠𝑝 Eq. (4) and L2 loss 𝐿2, where 𝑀 = {𝑚𝑗}

𝑁𝑖
𝑗=1

and 𝐺 = {𝑔𝑗}
𝑁𝑖
𝑗=1 represent the predicted value and ground-truth value

of each sampled anchor in the 𝑖th layer. 𝑁𝑖, 𝑁+
𝑖 , 𝑁

−
𝑖 represent the

number of sampled anchors, positive anchors whose IoU greater than
0.9 and negative anchors of this layer, respectively. (3) The loss of
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Offset-ASP is Smooth L1 loss 𝐿1. Note that only those sampled anchors
with IoU greater than 0.9 participate in the training of Offset-ASP. The
re-weights in 𝐿𝐵 and 𝐿𝑎𝑠𝑝 are used to balance the number between
positive and negative samples.

𝐿𝐵(𝑃 ,𝐺) = − 1
𝐿𝑖

𝐿𝑖
∑

𝑡=1
(
𝐿𝑖
𝑇 +
𝑖

⋅ 𝛿{𝑔𝑡 > 0.5} ⋅ log 𝑝𝑡

+
𝐿𝑖
𝑇 −
𝑖
(1 − 𝛿{𝑔𝑡 > 0.5} ⋅ log(1 − 𝑝𝑡)))

(3)

𝐿𝑎𝑠𝑝(𝑀,𝐺) = − 1
𝑁𝑖

𝑁𝑖
∑

𝑗=1
(
𝑁𝑖

𝑁+
𝑖

⋅ 𝛿{𝑔𝑗 > 0.9} ⋅ log𝑚𝑗

+
𝑁𝑖
𝑁−
𝑖
(1 − 𝛿{𝑔𝑗 > 0.9} ⋅ log(1 − 𝑚𝑗 )))

(4)

otal Loss. The loss of the 𝑖th layer is composed of three parts:
oundary loss, IoU loss and offset loss, as shown in Eqs. (5) (6) (7)
espectively. The total training objective is the sum of all three layers,
ormulated as Eq. (8). Besides, in order to balance the value between
ifferent terms, the coefficient 𝜆1 and 𝜆2 are set as 5 and 10.
𝑖
𝑏𝑜𝑢𝑛𝑑 = 𝐿𝐵(𝑃 𝑖𝑠 , 𝐺

𝑖
𝑠) + 𝐿𝐵(𝑃

𝑖
𝑒 , 𝐺

𝑖
𝑒) (5)

𝑖
𝐼𝑜𝑈 = 𝐿𝑎𝑠𝑝(𝑀 𝑖

𝑐𝑙𝑠, 𝐺
𝑖
𝐼𝑜𝑈 ) + 𝜆1 ⋅ 𝐿2(𝑀 𝑖

𝑟𝑒𝑔 , 𝐺
𝑖
𝐼𝑜𝑈 ) (6)

𝑖
𝑜𝑓𝑓 = 𝐿1(𝑀 𝑖

𝑐𝑒𝑛𝑡, 𝐺
𝑖
𝑐𝑒𝑛𝑡) + 𝐿1(𝑀 𝑖

𝑑𝑢𝑟𝑎, 𝐺
𝑖
𝑑𝑢𝑟𝑎) (7)

𝑡𝑜𝑡𝑎𝑙 =
3
∑

𝑖=1
(𝐿𝑖𝐵 + 𝐿𝑖𝐼𝑜𝑈 + 𝜆2 ⋅ 𝐿𝑖𝑜𝑓𝑓 ) (8)

nference. Each layer outputs 𝑃 𝑖𝑠 , 𝑃 𝑖𝑒 , 𝑀
𝑖
𝑐𝑙𝑠, 𝑀

𝑖
𝑟𝑒𝑔 , 𝑀

𝑖
𝑐𝑒𝑛𝑡 and 𝑀 𝑖

𝑑𝑢𝑟𝑎
rom the detector head in inference. Following [10,12,22], snippet in
oundary probability 𝑃𝑠 is screened out as candidate start point if it is
ocal peak or its probability is greater than 0.5 ⋅ max(𝑃𝑠). And snippets
an be selected as candidate end point from 𝑃𝑒 in the same way. Then
he candidate start and end points are combined into proposals. In order
o produce the more reasonable proposals, as shown in Fig. 6, each
ayer of SFPN only outputs anchors in the corresponding scale range.
pecifically, for the 𝑖th layer, its responsible scale range is [𝑆𝑖𝑚𝑖𝑛, 𝑆

𝑖
𝑚𝑎𝑥].

urthermore, in the proposals set, for any start snippet whose index is
𝑑𝑥 and centered at time 𝑡1, and the end snippet whose index is 𝑒𝑑𝑥
nd centered at time 𝑡2, we can get its start probability 𝑝𝑠 = 𝑃 𝑖𝑠 [𝑠𝑑𝑥],
nd probability 𝑝𝑒 = 𝑃 𝑖𝑒 [𝑒𝑑𝑥] and IoU score 𝑝𝐼𝑜𝑈 =𝑀 𝑖

𝑐𝑙𝑠[𝑒𝑑𝑥−𝑠𝑑𝑥, 𝑠𝑑𝑥] ⋅
𝑖
𝑟𝑒𝑔[𝑒𝑑𝑥 − 𝑠𝑑𝑥, 𝑠𝑑𝑥]. Its center is 𝑐 = (𝑠𝑑𝑥 + 𝑒𝑑𝑥)∕2𝐿𝑖 and duration

s 𝑑 = (𝑒𝑑𝑥 − 𝑠𝑑𝑥)∕𝐿𝑖. Subsequently, to refine the boundary, we can
btain center offset 𝛥𝑐 = 𝑀 𝑖

𝑐𝑒𝑛𝑡[𝑒𝑑𝑥 − 𝑠𝑑𝑥, 𝑠𝑑𝑥] and duration offset
𝑑 =𝑀 𝑖

𝑑𝑢𝑟𝑎[𝑒𝑑𝑥 − 𝑠𝑑𝑥, 𝑠𝑑𝑥], and adjust the boundary to as Eq. (9):
′ = 𝑑 ⋅ 𝛥𝑐 + 𝑐, 𝑑′ = 𝑑 ⋅ 𝑒𝛥𝑑

𝑡′1 = 𝑐′ − 𝑑′

2
, 𝑡′2 = 𝑐′ + 𝑑′

2
(9)

Finally, proposals generated by each layer are merged together
according to their confidence. We sort them from high to low and select
the top 𝐾 as final proposals. The action classifier assigns every proposal
with a certain label and a classification score 𝑃𝑙𝑎𝑏𝑒𝑙. The final score for
the proposal (𝑡′1, 𝑡

′
2) is shown as Eq. (10). Then Soft-NMS [32] is adopted

to remove redundant segments.

𝑠𝑐𝑜𝑟𝑒𝑡′1 ,𝑡′2 = 𝑝𝑠 ⋅ 𝑝𝑒 ⋅ 𝑝𝐼𝑜𝑈 ⋅ 𝑝𝑙𝑎𝑏𝑒𝑙 (10)

4. Experiments

4.1. Dataset and settings

Dataset. In order to verify the effectiveness of our method, we test
3

6

𝑀 𝑁𝑒𝑡 on two challenging datasets. ActivityNet-1.3 [27] contains 200 c
Table 1
The temporal action detection performance comparison with state-of-the-art methods
on ActivityNet-1.3. Bold data indicates the best performance.

Method Backbone mAP@tIoU (%)

0.5 0.75 0.95 Avg.

BSN [10] TSN 46.5 29.9 8.0 30.0
BMN [12] TSN 50.1 34.8 8.3 33.9
G-TAD [2] TSN 50.4 34.6 9.0 34.1
PCMNet [31] TSN 51.4 36.1 9.5 35.3
TCA-Net [32] TSN 52.3 36.7 6.9 35.5
RTD-Net [21] I3D 47.2 30.7 8.6 30.8
ContextLoc [33] I3D 56.0 35.2 3.6 34.2
AFDS [7] I3D 52.4 35.3 6.5 34.4
TAGS [34] I3D 56.3 36.8 9.6 36.5
GTAN [35] P3D 52.6 34.1 8.9 34.3
STPT [36] STPT 51.4 33.7 6.8 33.4
UnLoc-L [37] CLIP 58.8 – – –
ActionFormer [38] R(2 + 1)D 54.7 37.8 8.4 36.6
TriDet [39] R(2 + 1)D 54.7 38.0 8.4 36.8
𝑀3𝑁𝑒𝑡 (ours) R(2 + 1)D 55.0 38.8 10.8 38.0

categories of daily life, sports, etc. We use the training set for model
training and report the performance on the validation set. THUMOS-
14 [28] consists of 413 videos with 20 action classes which is almost
sports. In THUMOS-14, the validation set contains 200 long videos,
including 3007 action segments, and the test set contains 213 videos,
including 3358 action segments. Following the standard practice of
THUMOS-14, we train 𝑀3𝑁𝑒𝑡 on the validation set and valid it on the
test set.

Metric. In order to fully demonstrate the advantages of our proposed
method, we test 𝑀3𝑁𝑒𝑡 on two video action understanding tasks:
temporal action detection (TAD) and temporal action proposal (TAP).
Compared with TAD, TAP is aimed at locating action segments without
labels. For TAD task, mAP under a certain temporal IoU threshold
(mAP@IoU) is the main metric. As for TAP task, average recall at a
specified average number of proposals (AR@AN) is used to evaluate
the proposal performance. Besides, on ActivityNet, the area under the
AR-AN curve (AUC) also serves as a TAP metric.

Network Details. The sampling interval 𝜎 set as 16 frames and 5
rames for ActivityNet-1.3 and THUMOS-14, respectively. For
ctivityNet-1.3, we use linear interpolation to resize the length of video

eatures 𝑇 = 200. For a long video in THUMOS-14, a sliding window
ith a length of 256 and an overlap of 50% is used to truncate the origi-
al video feature. Finally, the results of all windows are concatenated as
he total result of the entire long video. The scale ranges of each layer in
he pyramid are set as: [𝑆1

𝑚𝑖𝑛, 𝑆
1
𝑚𝑎𝑥] = [0, 15%], [𝑆2

𝑚𝑖𝑛, 𝑆
2
𝑚𝑎𝑥] = [10%, 75%]

nd [𝑆3
𝑚𝑖𝑛, 𝑆

3
𝑚𝑎𝑥] = [50%, 100%]. As for the action classifier, following the

ther two-stage methods, Untrimmed Net [29] serves as the classifier
or THUMOS-14, and the recognition model by [30] for ActivityNet-1.3.

mplementation Details. 𝑀3𝑁𝑒𝑡 is trained using the Adam optimiza-
ion algorithm with batch size 8 and learning rate 10−3. The sampling
atio of each layer 𝑟1, 𝑟2, 𝑟3 are set to 50%, 40%, 90%, respectively. For
ctivityNet-1.3, the training process takes 10 epochs, where the first
epochs is the Generalization stage and the rest is the Specialization

tage. As for THUMOS-14, the total training epoch is 7, and only
he first epoch is the Generalization stage. Besides, the learning rate
s decayed to 10−4 after 5 epochs on THUMOS-14 and 7 epochs on
ctivityNet-1.3.

.2. Performance evaluation on detection

We compare 𝑀3𝑁𝑒𝑡 with other state-of-the-art methods on
ctivityNet-1.3 and THUMOS-14. Table 1 shows the comparison on

he validation set of ActivityNet-1.3. The mAP at IoU thresholds of
0.5, 0.75, 0.95} are reported, as well as the Avg.mAP which is cal-

ulated at IoU thresholds between 0.5 and 0.95 with the step of
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Table 2
The temporal action detection performance comparison with state-of-art methods on THUMOS-14, measured by
mAP@tIoU. Bold text indicates the best results. 𝑀3𝑁𝑒𝑡 performs better than all other existing methods at high
tIoU threshold.
Method Backbone mAP@tIoU (%)

0.3 0.4 0.5 0.6 0.7 Avg.

BSN [10] TSN 53.5 45.0 36.9 28.4 20.0 36.8
BMN [12] TSN 56.0 47.4 38.8 29.7 20.5 38.5
G-TAD [12] TSN 54.5 47.6 40.2 30.8 23.4 39.3
PCMNet [31] TSN 61.5 55.4 47.2 37.5 27.3 45.8
TCA-Net [32] TSN 60.6 53.2 44.6 36.8 26.7 44.3
RTD-Net [21] I3D 68.3 62.3 51.9 38.8 23.7 49.0
ContextLoc [33] I3D 68.3 63.8 54.3 41.8 26.2 50.9
AFDS [7] I3D 67.3 62.4 55.5 43.7 31.1 52.0
TAGS [34] I3D 68.6 63.8 57.0 46.3 31.8 52.8
GTAN [35] P3D 57.8 47.2 38.8 – – –
STPT [36] STPT 70.6 65.7 56.4 44.6 30.5 53.6
ActionFormer [38] R(2 + 1)D 73.4 67.4 59.1 46.7 31.5 55.6
𝑀3𝑁𝑒𝑡 (ours) R(2 + 1)D 71.9 66.3 59.5 49.9 36.8 56.9
Table 3
Temporal action proposal performance comparison with other representative two-
stage TAD methods on ActivityNet-1.3 and THUMOS-14. Bold data indicate the best
performance. 𝑀3𝑁𝑒𝑡 outperforms all other methods.

Method ActivityNet1.3 THUMOS14

AR@100 AUC AR@50 AR@100 AR@200 AR@500

BSN [10] 74.2 66.2 37.5 46.1 53.2 60.6
BMN [12] 75.0 67.1 39.4 47.7 54.7 62.1
RTD-Net [21] 73.2 65.8 41.5 49.3 56.4 62.9
TCA-Net [32] 76.1 68.1 42.1 50.5 57.1 63.6
𝑀3𝑁𝑒𝑡 (ours) 77.1 70.0 47.9 56.6 63.0 69.3

0.05. Impressively, 𝑀3𝑁𝑒𝑡 outperforms other representative methods
at IoU thresholds 0.75 and 0.95. 𝑀3𝑁𝑒𝑡 promotes the Avg.mAP from
36.6% to 38.0%, with an increase of more than 1.4%. Moreover, We
list the SOTA methods with different backbones. Since UnLoc-L [37]
uses a stronger large language model as the backbone, and pretrains
on multiple tasks, UnLoc-L obtains the best performance. In spite of
the large language model as the backbone, our proposed approach
demonstrates superiority over the others. Specifically, when compared
to the ActionFormer [38] that shares the same R(2+1)D backbone, our
method outperforms ActionFormer [38]. Moreover, in comparison to
TAGS [34], which utilizes a more powerful I3D backbone, we also
surpass the performance of TAGS [34].

Table 2 presents the detection performance comparison on
THUMOS-14. 𝑀3𝑁𝑒𝑡 achieves comparable performance with the best

ethod [38] at low tIoU thresholds. But, 𝑀3𝑁𝑒𝑡 outperforms other
representative methods at tIoU thresholds 0.5 and 0.7. To locate the
boundaries more accurately, a higher threshold is applied to discrim-
inate between positive and negative samples during training. Conse-
quently, 𝑀3𝑁𝑒𝑡 exhibits heightened performance at high tIoU. Higher
tIoU means more precise action boundaries, a more challenging yet
critical aspect of action localization. Meanwhile, it is noteworthy that
𝑀3𝑁𝑒𝑡 shows obvious superiority compared with other FPN-based
methods like [7], which substantiates the effectiveness of the SFPN
proposed in 𝑀3𝑁𝑒𝑡.

4.3. Performance evaluation on proposal

To further verify the advantages of 𝑀3𝑁𝑒𝑡, we do not consider ac-
tion classes of action segments to evaluate its performance on temporal
action proposal (TAP) task. Through Table 3, we can further discover
the performance improvement of AR@100 and the area under the AR-
AN curve (AUC) on ActivityNet-1.3. For instance, 𝑀3𝑁𝑒𝑡 boosts the
AUC from 68.1% to 70.0%. As for THUMOS-14, 𝑀3𝑁𝑒𝑡 outperforms
other methods in all metrics, which certifies the effectiveness of 𝑀3𝑁𝑒𝑡
once again.
7

Table 4
Ablation study on the MEM. The performance is reported on ActivityNet-1.3 and
THUMOS-14. The best result can be achieved with these two modules are integrated.

Construction THUMOS14 ActivityNet1.3

mAP@0.5 Avg.mAP mAP@0.5 Avg.mAP

Base 54.5 53.1 54.2 37.0
Base + Movement feature 56.1 54.3 54.5 37.3
Base + MRM 57.7 55.8 54.1 37.3
MEM 59.5 56.9 55.0 38.0

Table 5
Ablation study on Multi-Relation Module. The detection performance is reported on
ActivityNet-1.3 and THUMOS-14.

Local Semantic Segmental THUMOS14 ActivityNet1.3

mAP0.5 Avg.mAP mAP0.5 Avg.mAP

✓ 56.2 54.3 54.0 36.8
✓ 56.6 54.7 54.6 37.5

✓ ✓ 57.3 55.4 54.7 37.7
✓ 56.1 54.7 54.5 37.3
✓ ✓ 57.3 55.4 54.6 37.5
✓ ✓ 57.9 55.7 54.6 37.7
✓ ✓ ✓ 59.5 56.9 55.0 38.0

4.4. Ablation study

Ablation studies are performed thoroughly to verify the role of each
module in 𝑀3𝑁𝑒𝑡, as well as the impact of different training strategies.

(1) Effectiveness of the MEM. As discussed before, when construct-
ing the movement enhance feature, MFE and MRM are the crucial
designs in MEM. To certify the function of these two modules, we
design a Base model for comparison, in which the Movement Feature is
removed and MRM is replaced by temporal 1D convolution. As shown
in Table 4, we can find that compared with the Base model, Movement
Feature and MRM both can promote the performance. Besides, the best
results emerge when combining them together as the intact MEM.

(2). Effectiveness of the Multi-Relation Module. Multi-Relation
Module (MRM) consists of three paths, aiming to explore video tem-
poral and semantic relations within a unified framework. The local
path formed by TPP, it has multi-scale receptive field. From Table 5,
exploiting the temporal segmental relation and the global semantic
relation are both favorable to the detection performance. In addition,
complete MRM at the last row verifies that these three paths do not
conflict, and combining them is the best choice.

(3). Effectiveness of the U-shape Module. As discussed before,
when constructing the feature pyramid, U-shape Module is designed to
establish interactions between different layers. To reveal the validity
of this idea, we use 1D convolution with the step of 2 and AvgPooling

to downsample the feature sequence respectively. In addition, we use
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Table 6
Ablation study on the U-shape module. The Detection performance is reported on
ActivityNet-1.3 and THUMOS-14.

Construction THUMOS14 ActivityNet1.3

mAP@0.5 Avg.mAP mAP@0.5 Avg.mAP

DownSampling (AvgPooling) 57.5 55.5 54.4 37.5
DownSampling (Convolution) 57.9 55.9 54.5 37.4
ASPP 55.9 54.0 54.1 37.1
PPM 56.4 54.5 54.2 37.3
U-shape module 59.5 56.9 55.0 38.0

Table 7
Ablation study on the feature pyramid structure. ‘‘length’’ means the temporal length
of single-layer feature sequence. Bold data indicate the best performance.

THUMOS14 ActivityNet1.3

Length mAP@0.5 Avg.mAP Length mAP@0.5 Avg.mAP

64 53.7 52.6 50 53.0 36.6
128 54.3 53.4 100 54.0 37.1
256 56.3 54.7 200 54.2 37.3
SFPN 59.5 56.9 SFPN 55.0 38.0

Table 8
Ablation study on the two-stage training strategy. The proposed two-stage training leads
to better performance than the single stage method or the Bias method.

Training strategy THUMOS14 ActivityNet1.3

mAP@0.5 Avg.mAP mAP@0.5 Avg.mAP

Only Bias 55.5 53.5 45.5 29.5
Only generalization 57.5 55.5 54.3 37.4
Only specialization 57.5 55.7 54.6 37.4
Two-stage 59.5 56.9 55.0 38.0

Atrous Spatial Pyramid Pooling (ASPP) and Pyramid Pooling Module
(PPM) to build feature pyramids respectively. From Table 6, compared
with using multi-scale convolution to build FPN, physically detecting
actions on different scale features can bring more performance im-
provement. In addition, compared with only using DownSampling to
construct FPN, using U-shape module can get the best performance,
which substantiates the importance of this design.

(4). Effectiveness of feature pyramid structure. For better detection
ccuracy, 𝑀3𝑁𝑒𝑡 makes use of the feature pyramid. To verify the
mpact of this structure, we only use a single layer feature sequence
o conduct experiments and compare it with the SFPN, keeping other
omponents unchanged. On ActivityNet-1.3, single-layer feature with
engths of 200, 100 and 50 are used. On THUMOS-14, features with
engths of 256, 128 and 64 are used. Corresponding results are shown
n Table 7. The experimental results exhibit that SFPN performs bet-
er than any other single-layer structure, thus justifying the feature
yramid is indeed beneficial to the performance.

(5). Effectiveness of two-stage training. For efficient training of
3𝑁𝑒𝑡 and ensuring that the 𝑖th layer in SFPN is specialized in actions

at a specific scale range [𝑆𝑖𝑚𝑖𝑛, 𝑆
𝑖
𝑚𝑎𝑥], the two-stage training strategy is

applied. When training ASP of the 𝑖th layer, in the first Generalization
stage, the anchors are randomly selected from all scales according
to the sampling ratio 𝑟𝑖. In the second Specialization stage, the sam-
pling ratio inside and outside the range [𝑆 𝑖𝑚𝑖𝑛, 𝑆

𝑖
𝑚𝑎𝑥] are 2 ⋅ 𝑟𝑖 and 𝑟𝑖,

respectively. In this ablation study, we train 𝑀3𝑁𝑒𝑡 using the fully
Generalization stage, the fully Specialization stage and the complete
two-stage strategy, respectively. In addition, to demonstrate the ef-
fectiveness of this training method, we also test a new Bias training
strategy that only samples from the range [𝑆𝑖𝑚𝑖𝑛, 𝑆

𝑖
𝑚𝑎𝑥] with the sampling

ratio of 𝑟𝑖.
As shown in Table 8, the performance of the Bias strategy is the

worst, indicating that in addition to those samples in the specific scale
range, other samples outside this range also play an important role for a
8

better understanding of actions. Further, the training effect is impeded b
Table 9
Ablation study on the sampling ratio of two-stage training strategy.

Sampling ratio THUMOS14 ActivityNet1.3

mAP@0.5 Avg.mAP mAP@0.5 Avg.mAP

Two-stage (sampling ratio 6) 56.7 54.0 54.2 37.2
Two-stage (sampling ratio 4) 58.2 56.0 54.8 37.7
Two-stage (sampling ratio 2) 59.5 56.9 55.0 38.0
Two-stage (sampling ratio 1) 57.5 55.5 54.3 37.4

Table 10
Ablation study on the strategy for duplicate generation. We chose three selection
methods, of which Temporally Centered strategy achieved the best performance.

Strategy mAP@tIoU (%)

0.5 0.75 0.95 Avg.

Random strategy 54.5 38.2 11.0 37.5
Average strategy 54.7 38.5 11.4 37.8
Temporally Centered strategy 55.0 38.8 10.8 38.0

when removing either the Generalization or the Specialization stage,
which verifies the effectiveness of the two-stage strategy. We verify the
impact of different sampling ratio of the highlighted scale. According
to the Table 9, increasing the sampling ratio causes 𝑀3𝑁𝑒𝑡 to ignore
the role of other samples, causing the overall performance to decline.

(6) Effectiveness of the strategy for duplicate generation. In the
FE, we conduct experiments to investigate the influence of different

trategies for selecting static frames. Specifically, we examine three
trategies: Temporally Centered, Random, and Average. The Tempo-
ally Centered strategy selects the frame located at the temporal center
f each clip for duplicate generation. The Random strategy randomly
elects a frame within each clip for duplicate generation. Lastly, the
verage strategy involves computing the average of all frames within
ach clip and using the resulting frame for duplicate generation.

As shown in Table 10, the Random strategy exhibits inferior perfor-
ance due to the potential inclusion of blurry frames or abrupt camera
ovements. Conversely, Temporally Centered strategy and Average

trategy contain centered frame and average frame, respectively, which
chieve better performance. Temporally Centered strategy stands out
s the most effective, ultimately leading us to adopt this strategy for
uplicate selection.

(7). Qualitative Comparison. To illustrate the boundaries of 𝑀3𝑁𝑒𝑡
ore intuitively, we select four videos from ActivityNet-1.3 and
HUMOS-14 and compare our results qualitatively with the Base, in
hich we remove the MEM and only use the single-layer feature

equence of lengths 100 and 128 for ActivityNet-1.3 and THUMOS-14
espectively. Results with the highest confidence score are visualized
n Fig. 7. Firstly, Compared with the base method, 𝑀3𝑁𝑒𝑡 uses the
ovement feature, which enlarges the difference between action and

ackground, making the model more accurate in boundary localization.
econdly, it can be seen the High Jump action contains a large-scale
ction and a small-scale action. Due to the multi-scale module (SFPN)
n 𝑀3𝑁𝑒𝑡, 𝑀3𝑁𝑒𝑡 can better capture small-scale action and more
ccurately locate small-scale action boundaries. Results of qualitative
omparison once again prove the superiority of 𝑀3𝑁𝑒𝑡.

. Conclusion

Temporal action detection (TAD) aims to accurately localize ac-
ion segments and classify their corresponding action classes. In an
ffort to overcome the movement feature submergence and multi-scale
ction detection, we propose the 𝑀3𝑁𝑒𝑡 with two crucial designs.
irstly, we propose the Movement Enhance Module (MEM) to highlight
ovement feature at both short-term and long-term temporal relations.

n short-term temporal, the Movement Feature Extractor (MFE) is
sed to enhance movement information by exploiting the difference

etween dynamic clip and static image. In long-term temporal, the
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Fig. 7. Qualitative Comparison on ActivityNet-1.3 (first row) and THUMOS-14 (second row). The predictions of 𝑀3𝑁𝑒𝑡 can cover the ground truth actions with higher overlap.
The numbers of the GT bar indicate the start and end times, respectively. 𝑀3𝑁𝑒𝑡 can better capture small-scale action and more accurately locate small-scale action boundaries.
Multi-Relation Module (MRM) is used to enlarge the difference be-
tween action and background by capturing multi-temporal relations.
Secondly, we propose the Scale FPN (SFPN) to handle the different scale
actions. In order to learn scale information in a targeted manner, we de-
sign the two-stage training strategy, ensuring that each layer in 𝑀3𝑁𝑒𝑡
is specialized at a specific scale range. Extensive experiments conducted
on the ActivityNet-1.3 and THUMOS-14 validate the superiority of
𝑀3𝑁𝑒𝑡. However, our method is still based on dense anchors, resulting
in a large number of proposals and low efficiency. Besides, 𝑀3𝑁𝑒𝑡
does not take advantage of the interaction between the proposals. In
future work, we can combine it with the DETR-based method, and build
temporal and semantic associations between proposals to detect the
actions more accurate and efficient.
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